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1 Introduction
There is not much theory one can cover on the topic of sequences. Your intuition and some
rudimentary knowledge of inequalities, like the AMGM inequality or the Cauchy-Schwartz
inequality will often prove most helpful.

Advice : General advice

• Define an auxiliary sequence - a related sequence making the condition nicer.
• Conjecture about the properties of the sequence.
• Observe extremal elements (if they exist).

Lemma 1.1

A monotonic, periodic sequence is constant.

Another fact that you should keep in mind is that integer sequences are much nicer to work
with than real or rational sequences. One of the reasons for this is that a non-constant
integer sequence must have “large” differences between consecutive terms - namely the
difference is at least 1. This fact clearly not true for rational or real sequences.

Problem 1.2

Find all sets of real numbers {a1, . . . , a2015} such that

2 ·
√

an − n + 1 ≥ an+1 − n + 1

for all 1 ≤ n ≤ 2014 and additionally 2 ·
√

a2015 − 2014 ≥ a1 + 1.

Proof. Use the equality condition of the AMGM inequality and observe the cyclic struc-
ture of the problem.
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Problem 1.3: IMO 2014 P1

Let a0, a1, . . . be a strictly increasing sequence of positive integers. Prove that there
exists a unique n ∈ N, such that

an <
a0 + . . . + an

n
< an+1

Proof. Transform the inequality into the equivalent form:

n · an <
n∑

i=0
ai < n · an+1.

First we may try and subtract the term n · an from both sides, but unfortunately we do
not get anything nice. However, if we subtract a1 + . . . + an from the middle then we get
something nice, namely a sequence

bn =
n−1∑
i=1

(an − ai),

and the condition transformed into bn < a0 < bn+1, which is clearly fulfilled as {an} are
integers. This problem is proof of the fact that choosing a good auxiliary sequence can
make the problem much easier.

Problem 1.4: ISL 2019 A2

Let u1, . . . , u2019 be real numbers such that

2019∑
i=1

ui = 0 and
2019∑
i=1

u2
i = 1.

Prove that
min{ui} · max{ui} ≤ −1

2019 .

Proof. We split the numbers into non-negatives and negatives, {ai}k
i=1 and {bi}2019−k

i=1 .
The conditions transform as follows:

k∑
i=1

ai =
2019−k∑

i=1
bi and

k∑
i=1

a2
i +

2019−k∑
i=1

b2
i = 1,

and we wish to prove that max{ai} = a and max{bi} = b satisfy ab ≥ 1
2019 .

Using the Cauchy-Schwartz inequality doesn’t seem possible, as the two sets do not have
the same number of elements. Note that the constant 2019 in the denominator is equal
to the number of terms, so we may try:

1 =
k∑

i=1
a2

i +
2019−k∑

i=1
b2

i ≤ a ·
k∑

i=1
ai + b ·

2019−k∑
i=1

bi =

b ·
k∑

i=1
ai + a ·

2019−k∑
i=1

bi ≤ k · (ab) + (2019 − k) · ab = 2019 · (ab),
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which we wanted to prove. The decision to split the set into non-negatives and negatives
is quite natural, as inequalities are usually nicer to work with when all terms are non-
negative. The last step of the solution is motivated by the presence of the constant 2019
and the fact that we need a mixed term - something of the form a·b; whereas the condition
in the problem statement only tells us information about what happens when we multiply
two terms from family {ai}k

i=1 or from family {bi}2019−k
i=1 .

Problem 1.5: ISL 2020 A1

Let {an} be a sequence of positive real numbers, such that

(an+1)2 + anan+2 ≤ an + an+2.

Show that a2025 ≤ 1.

Proof. The problem statement seems true, as if the sequence grows larger than 1, then
the product of two elements of the sequence of the left side of the inequality should be
larger than the sum of two such numbers. As there are no initial terms of the sequence
and since no actual recursive relation is given, there is very little experimentation we can
do. We might try to either transform the inequality into something nicer to work with,
or we could try defining an auxiliary sequence. By adding the inequalities in the cases
n = k + 1 and n = k we can see:

(ak+1)2 + akak+2 + (ak)2 + ak−1ak+1 ≤ ak + ak+2 + ak−1 + ak+1.

Motivated by the desired inequality ak ≤ 1 we factorize the expression as follows.
(ak+1 − 1)(ak+1 + ak−1) + (ak − 1)(ak + ak+2) ≤ 0,

from which it follows that for every k > 1, one of ak+1 and ak must be smaller or equal
to 1.

Since we want to prove that a2025 ≤ 1, we define the auxiliary sequence bk = 1 − ak and
factorize the expression in the following way:

(1 − bk+1)2 + (1 − bk)(1 − bk+2) ≤ 2 − bk − bk+2

−2bk+1 + (bk+1)2 − bk − bk+2 + bkbk+2 ≤ −bk − bk+2

b2
k+1 + bkbk+2 ≤ 2bk+1

Since if bk < 0, then bk+1 ≥ 0 and bk−1 ≥ 0, we would reach contradiction by the equation
above, hence bk ≥ 0 ∀k > 1, meaning a2025 ≤ 1.

Problem 1.6: IMO 2023 P4

Let {xi}2023
i=1 be pairwise distinct positive real numbers such that

ai =
√

(x1 + . . . + xi)(
1
x1

+ . . . + 1
xi

),

are integers for all 1 ≤ i ≤ 2023. Prove that a2023 ≥ 3034.
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Proof. Some preliminary observations are that 3034 = 3
2 · 2024 − 1

2 , so we may want to
prove that ai ≥ 3

2 · i, but since {ai} are integers, we will actually prove that a2i+1 ≥ 3i + 1
by induction.

We prove this by using the Cauchy-Schwartz inequality:

a2
k+2 = (x1 + . . . + xk+2)

(
1
x1

+ . . . + 1
xk+2

)
=

((x1 + . . . + xk) + xk+1 + xk+2)
(( 1

x1
+ . . . + 1

xk

)
+ 1

xk+2
+ 1

xk+1

)
≥

(√
(x1 + . . . + xk) ·

( 1
x1

+ . . . + 1
xk

)
+
√

xk+1

xk+2
+
√

xk+2

xk+1

)2

>

(ak + 2)2

The inequality between row 2 and 3 follows from the Cauchy-Schwartz inequality, while
the strict inequality from row 3 to row 4 follows from the AMGM inequality, as xk+1 and
xk+2 are distinct, hence equality can’t be reached. As ak+2 is an integer strictly larger
than ak + 2, it follows that ak+2 ≥ ak + 3, which gives the desired conclusion.

Problem 1.7: ISL 2015 A1

Let {an} be a sequence of positive real numbers, such that

ak+1 ≥ kak

(ak)2 + (k − 1)

for every positive integer k. Show that an + an−1 + . . . + a1 ≥ n for every n ≥ 2.

Proof. We define the auxiliary sequence sk = ak + . . . + a1, where s0 = 0 and transform
the given inequality in the following way:

k

ak+1
≤ ak + k − 1

ak

=⇒ k

ak+1
− k − 1

ak

≤ ak.

By summing n such inequalities we get:
n

an+1
≤ sn.

Now we can use induction to see:

sn+1 = sn + ak+1 ≥ sn + n

sn

≥ n + 1.

Where the last inequality is achieved by noting that sn = 1 and sn = n produce equality,
hence sn ≥ n must produce the desired inequality. The main part of the problem was
transforming the inequality into a nicer form. This specific manipulation can be motivated
by the fact that taking inverses of both sides seems good, as we get rid of the sum in
the denominator on the right and replace it with a product in the denominator, which
behaves much more nicely.
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Problem 1.8

Define the following sequence of real numbers: a1 = 1 and

an+1 = an + 1
an

.

Determine the integer part of a100.

Proof. Observe:

(an+1)2 = (an)2 + 2 + ( 1
an

)2 =⇒ (an)2 = 2n +
n−1∑
i=2

( 1
ai

)2
=⇒ an >

√
2n.

By using the inequality from above we get:

(an)2 = 2n +
n−1∑
i=2

( 1
ai

)2
≤ 2n +

n−1∑
i=2

1
2i

≤ 2n + n − 3
4 = 9n − 3

4 ,

where the last inequality was reached by observing that an ≥ 2 for n ≥ 2. In fact, a much
shaper bound of

(an)2 ≤ 2n + 1
2 ln (n − 2)

can be reached with some rudimentary knowledge of analysis. Anyway, the integer part of
a100 is 14, given by some simple calculation. In fact, we can also get that ⌊a2025⌋ = 63.

Problem 1.9: EGMO 2020 P6

Let m > 1 be a positive integer. Define the sequence {an} by a1 = a2 = 1, a3 = 4 and
the recursive relation:

an = m · (an−1 + an−2) − an−3.

Determine all m for which all terms of the defined sequence are perfect squares.

Proof. We start by some preliminary calculation:

a4 = 5m − 1
a5 = 5m2 + 3m − 1

a6 = 5m3 + 8m2 − 2m − 4
a7 = 5m4 + 13m + m2 − 10m − 1

Recall one of the standard arguments for proving that an expression is not a perfect
square: we bound it strictly between two consecutive perfect squares. The expressions
we have found are not very promising, as the leading coefficients are not perfect squares,
meaning that the bounds we produce by blindly following the above advice will not be
very sharp. We use the same approach, but more carefully: if all of the terms of the
sequence are perfect squares, so are their products. By multiplying two expressions that
are both odd degree, or both even degree we will find a polynomial of odd degree with
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leading coefficient that is a square, which seems much more promising. We chose a4 and
a6 as the two candidates, as they have smallest degrees.

a4 · a6 = (5m − 1) · (5m3 + 8m2 − 2m − 4) = 25m4 + 35m3 − 18m2 − 18m + 16.

The candidate for one of the bounds is

(5m2 + bm + c)2 = 25m4 + (10b)m3 + (10c + b2)m2 + (2bc)m + c2

But since the coefficient of the cubic term in the expression above is a multiple of 10, we
make the following technical shift:

f(m) = 4 · a4 · a6 = 100m4 + 140m3 − 72m2 − 72m + 16,

which is still a square as it is a product of three squares, and

Pb,c(m) = (10m + b + c)2 = 100m4 + (20b)m3 + (20c + b2)m2 + (2bc)m + c2.

Specifically, we look at

P7,−6(m) = 100m4 + 140m3 − 71m2 − 84m + 36.

We see that the following inequality

f(m) < P7,−6(m)
100m4 + 140m3 − 72m2 − 72m + 16 < 100m4 + 140m3 − 71m2 − 84m + 36

12m < m2 + 20

holds for all positive integers larger than 10. Analogously:

P7,−7(m) ≤ f(m)
100m4 + 140m3 − 91m2 − 98m + 48 ≤ 100m4 + 140m3 − 72m2 − 72m + 16

32 ≤ 19m2 + 26m

holds for all positive integers m. Now we must check which of the m ∈ {1, . . . , 10} give
solutions. By simple calculation, we eliminate all values except 2 and 10, as at least one of
a4, a5 and a6 are not squares in those cases. By some not-so-trivial guessing and checking
we can see that m = 2 gives an = (Fn)2, where Fn are the Fibonacci numbers, and m = 10
gives an = (Gn)2, where Gn+2 = 3 · Gn+1 + Gn with initial conditions G1 = G2 = 1
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