Some results of Algebraic number theory

Hugo Trebše [\(hugo.trebse@gmail.com\)](mailto:hugo.trebse@gmail.com)

19. oktober 2024

Kazalo

1 Pell's primes

1.1 Theoretical necessities

- 1. What is $1\frac{1}{2}$ $\frac{1}{2}$ generator property?
- 2. How to determine $\mathcal{C}(\mathcal{O}_K)$?
- 3. The equivalence classes in $\mathcal{C}(\mathcal{O}_K)$ are under the following relation:

a ∼ *b* \iff *ab*^{−1} ∈ $\mathcal{F}(K)$ (the group of principal fractional ideals)

First we state a certain theorem from the lectures.

Theorem 1.1: Inert, split and ramified primes of \mathbb{Z} in $\mathcal{O}_{\mathbb{Q}(\sqrt{m})}$ Let $p \in \mathbb{P}$ be a rational prime. Then $\langle p \rangle$ factorizes as follows in $\mathcal{O}_{\mathbb{Q}(\sqrt{m})}$: • if *p* | *m*, then $\langle p \rangle = \langle p, \sqrt{m} \rangle^2$ • if $p=2$, then $\sqrt{ }$ \int $\overline{\mathcal{L}}$ if $m \equiv 3 \pmod{4}$: $\langle p \rangle = \langle 2, 1 + \sqrt{m} \rangle^2$ if $m \equiv 1 \pmod{8}$: $\langle p \rangle = \langle 2, \frac{1+\sqrt{m}}{2} \rangle$ $\frac{\sqrt{m}}{2}$ $\rangle \cdot \langle 2, \frac{1-\sqrt{m}}{2} \rangle$ $\frac{\sqrt{m}}{2}\rangle$ if $m \equiv 5 \pmod{8}$: $\langle p \rangle$ is inert • else: $\sqrt{ }$ $\left| \right|$ \mathcal{L} if $m \equiv n^2 \pmod{p}$: $\langle p \rangle = \langle p, n +$ √ $\overline{m}\rangle\cdot\langle p,n-\rangle$ √ $\overline{m}\rangle$ if $m \not\equiv n^2 \pmod{p}$: $\langle p \rangle$ is inert

1.2 Pell's primes

If $p \nmid m$ and $p \neq 2$, then we know that $\langle p \rangle$ ramifies or splits if and only if *m* is a quadratic residue mod *p*.

If *p* splits then we know that the ideal $\langle p \rangle$ must be a product of at least two ideals. Since p is an element of the base field in a quadratic extension, it holds that $N(\langle p \rangle) = p^2$. Since norms of ideals, like norms of elements, lie in the base fields, which means that the norms of the decomposition ideals must multiply to give p^2 . Since we define the norm of an ideal $\mathfrak{a} \leq \mathcal{O}_K$ as $\mathcal{O}_K/\mathfrak{a}$, the norm of \mathfrak{a} equals 1 when $\mathfrak{a} = \mathcal{O}_K$, which can't occur if $\langle p \rangle$ splits.

It follows that $\langle p \rangle$ splits into two prime ideals, each of which has norm *p*. Hence there exists an element in each of these ideals, which has the norm *p*.

It hence follows that for a fixed *d*, the diophantine equation

$$
x^2 + dy^2 = p
$$

has a solution $x, y \in \mathbb{Z}$ and $p \in \mathbb{P}$ if and only if *d* is a square modulo *p*.

2 Weak approximation theorem

We state the following less-known cousin of the *Chinese remainder theorem*.

Theorem 2.1: Weak approximation theorem

For all prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ of a **Dedekind domain** *D* and for all choices of integers e_1, e_2, \ldots, e_n there exists $x \in D$, such that

$$
\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_n^{e_n} \cdot J,
$$

where $J \leq D$ is comaximal to every \mathfrak{p}_i .

We use this theorem to deduce the one and a half generator property of Dedekind domains.

Theorem 2.2: One-and-a-half generator property

We wish to show that in any Dedekind domain *D*, for any $I \leq D$ and for all $x \in I \setminus \{0\}$, there exists an $y \in I$, such that

$$
I = \langle x, y \rangle.
$$

Proof. Decompose the ideal $I = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_n^{e_n}$. It is clear that $\langle x \rangle \subseteq I$. Factorize the ideal $\langle x \rangle$ as follows:

$$
\langle x \rangle = \mathfrak{p}_1^{e'_1} \mathfrak{p}_2^{e'_2} \dots \mathfrak{p}_n^{e'_n} \mathfrak{q}_1^{v_1} \mathfrak{q}_2^{v_2} \dots \mathfrak{q}_m^{v_m}.
$$

Clearly, $\forall 0 \leq i \leq n : e'_i \geq e_i$. Since $\langle x, y \rangle = \langle x \rangle + \langle y \rangle$, we seek *y*, such that

$$
\nu_{\mathfrak{p}_i}(\langle y \rangle) = e_i \quad \text{and} \quad \nu_{\mathfrak{q}_j}(\langle y \rangle) = 0
$$

 $\forall 0 \leq i \leq n$ and $\forall 0 \leq j \leq m$. However the existence of such a *y* is ensured by the weak approximation theorem. It is easy to check that the ideal $\langle x, y \rangle$ indeed equals *I*, by well known properties of the *p*-adic valuation function. \Box

3 Determining O*^K*

Lemma 3.1

A Dedekind domain *K* is a PID if and only if it is a UFD.

We define the following equivalence relation on elements of $\mathcal{F}(K)$ - the group of fractional ideals of the Dedekind domain *K*:

$$
a \sim b \iff ab^{-1} \in \mathcal{F}(K).
$$

Then the following theorem holds (I also definitely know how to prove this theorem, but choose not to :P)

Theorem 3.2: Minkowski's theorem

Let \mathcal{O}_K be the ring of integers of a number field *K*. Then for all $x \in \mathcal{C}(\mathcal{O}_K)$ there exists $I \leq \mathcal{O}_K$ such that:

$$
x = [I]_{\sim}
$$
 and $N(I) \leq \lambda_K$,

where λ_K is the Minkowski bound, defined as follows:

$$
\lambda_k = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\text{disc}(\mathcal{O})_{\mathcal{K}}|},
$$

where $n = [K : \mathbb{Q}]$ and *s* is the number of pairs of complex embdeddings of *K* into \mathbb{C} .

Since every equivalence class has a representative, it follows we only need to check ideals $\langle p \rangle$, to determine the class group - usually we determine its order and then use some arguments regarding the order of elements to pinpoint it exactly.

Now the question becomes: »Which ideals of the form $\langle p \rangle$ are prime/maximal in \mathcal{O}_K ?«. The answer is - look at $\mathcal{O}_K/\langle p \rangle$ and see if its a field/domain.