Kummer and Kronecker: two results in algebraic number theory

Hugo Trebše [\(hugo.trebse@gmail.com\)](mailto:hugo.trebse@gmail.com)

19. oktober 2024

Theorem 0.1

Let $\alpha \in \mathbb{A}$ and $|\alpha| = 1$. If all Galois conjugates of α have absolute value 1, then α is a root of unity.

Proof. Set $\alpha = \alpha_1$ and denote the algebraic conjugates of α as $\alpha_2, \ldots, \alpha_n$.

Observe the polynomial

$$
p_k(X) = \prod_{i=1}^n (X - \alpha_i^k).
$$

The coefficients of p_k are symmetric polynomials over \mathbb{Z} in $\alpha_1^k, \alpha_2^k, \ldots, \alpha_n^k$ and hence symmetric polynomials in $\alpha_1, \alpha_2, \ldots, \alpha_n$. By the fundamental theorem of symmetric polynomials, the coefficients of p_k can be expressed as a polynomial over $\mathbb Z$ in the elementary symmetric polynomials of variables $\alpha_1, \alpha_2, \ldots, \alpha_n$. However, by the Vieta formulas on the minimal polynomial of α , we may conclude that the elementary symmetric polynomials in variables $\alpha_1, \alpha_2, \ldots, \alpha_n$ evaluate to rationals. It hence follows that the coefficients of p_k must be rational. But since the coefficients of p_k are also algebraic integers it follows that $p_k \in \mathbb{Z}[X]$

The *m*-th coefficient of p_k is, however, bounded from above by $\binom{n}{n}$ *m* by the triangle inequality and the assumption that the α_i have absolute value at most 1. It hence follows that there are only finitely many distinct polynomials in the sequence $\{p_i\}_{i\in\mathbb{N}}$. It follows that there exists an infinite set of positive integers *S*, such that for all $a, b \in S$: $p_a = p_b$

By the definition of p_j it follows that $\{\alpha_1^a, \alpha_2^a, \dots, \alpha_n^a\}$ is a permutation of $\{\alpha_1^b, \alpha_2^b, \dots, \alpha_n^b\}$. Since *S* is infinite, it must be that for some distinct $c, d \in S$:

$$
(\alpha_1^c, \alpha_2^c, \dots, \alpha_n^c) = (\alpha_1^d, \alpha_2^d, \dots, \alpha_n^d)
$$

which proves that all α_i are roots of unity.

Theorem 0.2

Let $p \in \mathbb{P}$ and $\zeta_p = e^{\frac{2\pi i}{p}}$. If $u \in \mathbb{Q}(\zeta)^{\times}$, then for some integer r

$$
\frac{u}{\overline{u}} = \zeta_p^r.
$$

Proof. If $u \in \mathbb{Q}(\zeta)$ is a unit, then \overline{u} must be a unit. Indeed, there exists $u' \in \mathbb{Q}(\zeta)$, such that $u \cdot u' = 1$, from which it follows that $\overline{u} \cdot \overline{u'} = \overline{1} = 1$. Such a manipulation is indeed legal as *u* must be a Q-linear combination of $1, \zeta_p, \zeta_p^2, \ldots, \zeta_p^{p-1}$, hence \overline{u} is a \mathbb{Q} -linear combination of $1, \overline{\zeta_p}, \overline{\zeta_p^2}, \ldots, \overline{\zeta_p^{p-1}},$ which means $\overline{u} \in \mathbb{Q}(\zeta_p)$ since $\overline{\zeta_p} \in \mathbb{Q}(\zeta)$.

It follows that $\frac{u}{u} \in \mathbb{Q}(\zeta_p)^\times$ and $|u| \leq 1$ *u u* $= 1$. We would now like to apply the result proven above, which requires that all Galois conjugates of $\frac{u}{u}$ to have absolute value 1.

Since $\mathbb Q$ is a field of characterstic zero, we know that $\mathbb Q(\zeta_p)$ is a Galois extension and since $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ is an extension of degree $p-1$, a well-known result implies

$$
\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong \mathbb{Z}_{p-1}.
$$

 \Box

We know from Galois theory that for any Galois conjugate *v* of $\frac{u}{u}$, there must exist a $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$, such that

$$
\sigma(v) = \frac{u}{\overline{u}}.
$$

Since any automorphism in $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is uniquely determined by the image of ζ_p and since $\overline{\zeta_p} \in \mathbb{Q}(\zeta_p)$, it is clear that complex conjugation $\overline{\zeta_p}$ is a field automorphism of $\mathbb{Q}(\zeta_p)$.

As $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong \mathbb{Z}_{p-1}$ is an Abelian group, all automorphisms of $\mathbb{Q}(\zeta_p)$ commute. It follows that:

$$
|v|^2 = v \cdot \overline{v} = \sigma(\frac{u}{\overline{u}}) \cdot \overline{\sigma(\frac{u}{\overline{u}})} = \sigma(\frac{u}{\overline{u}}) \cdot \sigma(\frac{\overline{u}}{u}) = \sigma(\frac{u}{\overline{u}} \cdot \frac{\overline{u}}{u}) = \sigma(1) = 1
$$

This demonstrates that all Galois conjugates of $\frac{u}{u}$ have absolute value 1, hence $\frac{u}{u} = \zeta_p^r$